If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10^2+7^2=b^2
We move all terms to the left:
10^2+7^2-(b^2)=0
We add all the numbers together, and all the variables
-1b^2+149=0
a = -1; b = 0; c = +149;
Δ = b2-4ac
Δ = 02-4·(-1)·149
Δ = 596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{596}=\sqrt{4*149}=\sqrt{4}*\sqrt{149}=2\sqrt{149}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{149}}{2*-1}=\frac{0-2\sqrt{149}}{-2} =-\frac{2\sqrt{149}}{-2} =-\frac{\sqrt{149}}{-1} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{149}}{2*-1}=\frac{0+2\sqrt{149}}{-2} =\frac{2\sqrt{149}}{-2} =\frac{\sqrt{149}}{-1} $
| 3w-2w=26 | | 3/x-(2x+2)/5=1 | | 3w+2w=26 | | 14^2+x^2=19^2 | | 13x+14–17x+12=106–8 | | 3(2x+3)/12=2x-7 | | 10/n+4=24 | | 13=12-q+5 | | h=-16^(2)+38.4+18 | | 4+q=12-2 | | 5x+7=9x-11 | | 10+2x=30-10 | | (3m+7)(5m-9)=0 | | (3m+7)(5m-9)=9 | | (3a+5)(8a-9)=0 | | 4g-1=-7g+10 | | 5(2x+3)+3(x-5)=4(2x+7) | | 4w-3(2w+5)=3(w-2) | | 5x+2(2x+3)=3x+12 | | 11-x/2=7 | | 11-2/x=7 | | 3(x+7)=2x+3 | | 106+17+5x=3x+17 | | 3x+25=8x+7 | | 9h-17=55h= | | 4x-15=x-6 | | 3x+14=2x+18 | | 5(2m+4)+5=15 | | 12=-4(b+-2 | | (3x+2)/2-(3x+1)/6=5/3+2x | | 75x–2=10 | | x2-x-1001000=0 |